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1
LARGE-SCALE SURFACE
RECONSTRUCTION THAT IS ROBUST
AGAINST TRACKING AND MAPPING
ERRORS

BACKGROUND

Surface reconstruction (SR) involves identifying surfaces
of objects in a physical space. For example, the surfaces can
represents walls, floors, a ceiling, furniture or other objects
in a room. The surfaces provide a model of the physical
environment. Such a model can be used in a wide range of
applications. One example is guiding a robot through a
physical space. Another example is displaying a virtual
object to a user, such by using a head mounted display
device.

SUMMARY

Technology described herein provides various embodi-
ments for reconstructing surfaces in a physical space.

Depth maps of a physical space are obtained using a depth
sensor. A depth map contains depth values which represent
a distance from the depth sensor to surfaces in a physical
space. The depth maps are defined with respect to volumes
in the physical space, and the location of the volumes is
defined with respect to a coordinate system. For example,
the coordinate system can be defined according to a pose
(e.g., position and orientation) of a rig on which the depth
sensor is carried.

However, errors in the position of the volumes can
accumulate as additional depth maps are obtained and
additional volumes are defined. To reduce the accumulation
of errors, visible light images of the physical space are
obtained and used to form a pose graph. The pose graph
comprises nodes which are associated with different poses of
the rig and the corresponding images. Links between the
nodes represent correspondences between the images, and
transforms between coordinate systems of the nodes. From
time to time, as new images are captured, the pose graph is
updated. For example, a node can be updated by updating
the coordinate system associated with the node.

By anchoring the volumes to the nodes of the pose graph,
the surface reconstruction process benefits from the
increased accuracy which results from updating of the
coordinate systems. As a result, the volumes and surfaces
can be placed more accurately. Surfaces can be recon-
structed at any time according to the current state of the pose
graph.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like-numbered elements correspond to
one another.

FIG. 1 is a block diagram of a system 5 for surface
reconstruction which includes a rig, a server and a hub
computing system.

FIG. 2 is top view of an implementation of the rig 20 of
FIG. 1 as a head mounted display (HMD) device 150.

FIG. 3 is a block diagram depicting the various compo-
nents of HMD device 150 of FIG. 2.
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FIG. 4 is a block diagram describing the various compo-
nents of processing unit 105 of FIG. 2.

FIG. 5 is a block diagram of one embodiment of the hub
computing system 50 of FIG. 1.

FIG. 6A depicts a process for reconstructing surfaces in a
physical space using a pose graph.

FIG. 6B depicts further details of step 603 of FIG. 6A.

FIG. 6C depicts further details of step 604 of FIG. 6A.

FIG. 6D depicts further details of step 605 of FIG. 6A.

FIG. 6E depicts further details of step 606 of FIG. 6A.

FIG. 7 depicts a surface reconstruction pipeline for car-
rying out the process of FIG. 6A.

FIG. 8A depicts an example of a signed distance function
(SDF) as discussed in connection with the 3D fusion sub-
system 734 of FIG. 7.

FIG. 8B depicts an example of a depth map projected into
voxels as discussed in connection with the 3D fusion sub-
system 734 of FIG. 7.

FIG. 9A depicts a set of volumes 900-904 and a frustum
920 of a depth sensor.

FIG. 9B depicts a new volume which is added to the set
of volumes 900-904 of FIG. 9A, as represented by an
initially-placed volume 905 and a repositioned volume 906.

FIG. 10A depicts volumes which have an initial amount
of overlap.

FIG. 10B depicts the volumes of FIG. 10A after their
positions are adjusted based on an adjustment of a pose
graph, resulting in a reduced amount of overlap.

FIG. 11A depicts an example of clipping of blocks in a
volume due to excessive overlap.

FIG. 11B depicts another example of clipping of blocks in
a volume due to excessive overlap.

FIG. 12A depicts an example of a pose graph which
represents poses of a rig in a physical space.

FIG. 12B depicts an example data record for an image
captured by a camera.

FIG. 12C depicts an example data record for a depth map
captured by a depth sensor.

FIG. 12D depicts an example data record of a pose graph.

FIG. 13A depicts an example physical space, showing a
frustum of a depth sensor.

FIG. 13B depicts a depth map consistent with FIG. 13A.

FIG. 13C depicts distance values of the depth map of FIG.
13B.

FIG. 14 A depicts the example physical space of FIG. 13A,
showing a field of view of a visible light camera.

FIG. 14B depicts an image obtained by the visible light
camera of FIG. 14A.

FIG. 14C depicts the example physical space of FIG. 13A,
showing another field of view of the visible light camera as
a pose of the HMD device is changed.

FIG. 14D depicts an image obtained by the visible light
camera of FIG. 14C.

FIG. 15A depicts an initial placement of volumes in the
physical space of FIG. 13A.

FIG. 15B depicts an adjusted placement of the volumes of
FIG. 15A.

FIG. 16 depicts an example application in which a virtual
object is placed in the physical space of FIG. 13A.

DETAILED DESCRIPTION

Surface reconstruction can be used in many applications,
including placing a virtual object, defining a play space,
path-finding, collision detection or occlusion of virtual
objects a physical space.
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Surface reconstruction over large scales requires robust-
ness against tracking and mapping errors. For example, a
physical space having a large scale can be a room in a home,
office or museum, or an outdoor space. In a surface recon-
struction process, surfaces are acquired using multiple depth
maps which are acquired by a depth sensor carried on a rig.
The surfaces are localized with respect to each other using
computer vision tracking and mapping techniques which are
prone to cumulative inaccuracies. Furthermore, pose esti-
mates of the rig change over time as more information about
the environment becomes available.

Some SR solutions operate on a small scale or ignore
tracking errors. However, this results in SR data that is not
self-consistent. The techniques provided herein address the
above and other issues. In one approach, an SR process
involves creating multiple separate SR volumes to recon-
struct. Each volume is anchored to (e.g., associated with) a
node (e.g., a key frame) in a tracking and mapping pose
graph. When the pose graph updates, such as due to a bundle
adjustment or a re-localization, the volumes automatically
adjust their pose accordingly.

Additional aspects include allowing the volumes to over-
lap somewhat when they are initially placed, to avoid gaps
which might otherwise occur when the position of the
volumes is adjusted based on an update to the pose graph.
New volumes can be created, or existing volumes can be
expanded in size, to remove any gaps in the coverage of the
physical space which may occur. Moreover, when SR vol-
umes overlap excessively, redundant volumes can be
deleted. Volumes can be occasionally re-anchored to a
closest node if appropriate.

FIGS. 1-5 describe various systems which can be used for
surface reconstruction. FIG. 6 and later figures describe
surface reconstruction techniques and scenarios.

FIG. 1 is a block diagram of a system 5 for surface
reconstruction which includes a rig, a server and a hub
computing system. The rig, server and hub computing
system are examples of hardware computing devices. A rig
20 can represent a device which moves around in a physical
space. The device may be mounted to an autonomous mobile
robot, for instance, or carried or worn by a user, e.g., a
person, such as on a head mounted display device, for
instance. The rig has different poses as it moves around. In
the context of tracking and mapping algorithms, a pose
indicates a point in space and a direction. That is, it is a
combination of a position and an orientation. The rig
includes a communication interface 21, such as for commu-
nicating with a server 10 via a network 30. An augmented
reality projection system 22 can be used for displaying
augmented reality images (e.g., virtual objects) in the physi-
cal space in which surface reconstruction is performed.
Control circuits 23 are used for controlling the various
components of the rig. A visible light camera 24 obtains
images of the physical space, e.g., at a fixed rate such as
several times per second, or at specified times.

A depth sensor 25 obtains a depth map of the physical
space. Typically, the depth maps are obtained less frequently
than the camera images. The depth sensor can be a time-
of-flight camera or a stereoscopic camera, for instance. A
gaze detection system 26 may be used to determine the
user’s gaze in the case of the rig being a head mounted
display device. For example, this can be useful in placing
virtual objects in the physical space. An orientation sensor
27 obtains readings regarding an orientation of the rig. For,
example, an orientation reading can be associated with each
image and depth map. These can be inertial sensors, for
instance, discussed further below. A memory 28 can store
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executable code which is executed by the control circuits to
provide the functionality described herein, as well as storing
information which is obtained by the visible light camera 24,
the depth sensor 25, the gaze detection system 26 and the
orientation sensor 27.

Optionally, the rig communicates with a server 10. For
example, the rig could upload some of the information that
it gathers or download information such as executable code,
data for the augmented reality projection system, or other
content. In one approach, the server is remote from the rig.
In another approach, the rig communicates with a local hub
computing system 50, such as in the user’s home. The hub
computing system could be a gaming console which runs
various gaming and non-gaming applications, for instance.
See also FIG. 5.

In one approach, the network 30 is a wireless network
such as WI-FI®, BLUETOOTH®), infra-red (e.g., IrfDA®)
or cellular (e.g., GSM). Optionally, multiple rigs can com-
municate with one another within a common physical space.

Further details of these system are provided in connection
with the following figures.

Generally, the communication interfaces allow commu-
nication between computing devices. The control circuits
provide control of hardware and/or software of the respec-
tive computing devices. For example, the control circuits
can include one or more processors which execute instruc-
tions stored on one or more tangible, non-transitory proces-
sor-readable storage devices having processor-readable soft-
ware embodied thereon for programming a processor to
perform processor- or computer-implemented methods as
described herein. The memories can store the instructions as
code, and can provide the processor-readable storage
devices. The memories can provide databases, data stores or
other sources of data which are accessed to perform the
techniques described herein. The memories can be hardware
memory devices.

FIG. 2 is top view of an implementation of the rig 20 of
FIG. 1 as a head mounted display (HMD) device 150. Only
the right side of the HMD device is depicted in detail. The
HMD device includes a head-mounted frame 101 which can
be generally in the shape of an eyeglass frame, temples 102
and 103, and a front lens frame including a nose bridge 104.
Built into nose bridge 104 is a microphone 110 for recording
sounds, including spoken user commands, and transmitting
corresponding audio data to processing unit 105. Lenses 116
and 119 are see-through, in an example of a see-through
near-to-the-eye HMD device. An immersive HMD device
could alternatively be used.

The HMD device can be worn on the head of a user so that
the user can see through a display and thereby see a
real-world scene which includes an image which is not
generated by the HMD device. The HMD device can be
self-contained so that all of its components are carried by the
frame. Optionally, one or more components of the HMD
device are not carried by the frame. For example, one of
more components which are not carried by the frame can be
physically attached by a wire to a component carried by the
frame.

Further, one of more components which are not carried by
the frame can be in wireless communication with a compo-
nent carried by the frame, and not physically attached by a
wire or otherwise to a component carried by the frame. The
one or more components which are not carried by the frame
can be carried by the user, in one approach, such as on the
wrist. For example, the processing unit 105 could be con-
nected to a component in the frame via a wire or via a
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wireless link. The term “HMD device” can encompass both
on-frame components and associated off-frame components.

The processing unit 105 includes much of the computing
power used to operate the HMD device. The processor may
execute instructions stored on a processor readable storage
device for performing the processes described herein. In one
embodiment, the processing unit communicates wirelessly
with one or more servers, hub computing systems, other
HMDs or other computing devices. Control circuits 136
provide various electronics that support the other compo-
nents of the HMD device.

At the front of HMD device are one or more forward- or
room-facing visible light cameras 113. The cameras can
include at least one visible light video camera that can
capture video and still images, and transmit the images to the
processing unit. The camera can be used to identify features
in the physical space, such as colors, patterns, shapes, lines
and so forth. A depth sensor can be formed by the combi-
nation of an infrared emitter 115 and an infrared sensor/
detector 117. The visible light camera may also be part of the
depth sensor. The visible light camera 113 faces outward and
has a viewpoint similar to that of the user.

A portion of the frame of the HMD device surrounds a
display that includes one or more lenses. The display
includes a light guide optical element 112, opacity filter 114,
a front, right-side see-through lens 116 and a rear, right-side
see-through lens 118. In one embodiment, opacity filter 114
is behind and aligned with see-through lens 116, light guide
optical element 112 is behind and aligned with opacity filter
114, and see-through lens 118 is behind and aligned with
light guide optical element 112. Opacity filter 114 filters out
natural light (either on a per pixel basis or uniformly) to
enhance the contrast of the augmented reality imagery. Light
guide optical element 112 channels artificial light to the eye.
Similarly, the left side of the HMD includes a front, left-side
see-through lens 119 and a rear, left-side see-through lens
121.

Mounted to or inside temple 102 is an image source,
which (in one embodiment) includes microdisplay 120 for
projecting an augmented reality image and lens 122 for
directing images from the microdisplay into light guide
optical element 112. In one embodiment, lens 122 is a
collimating lens. An augmented reality emitter can include
the microdisplay, one or more optical components such as
the lens 122 and light guide optical element 112, and
associated electronics such as a driver. Such an augmented
reality emitter is associated with the HMD device, and emits
light to a user’s eye, where the light represents augmented
reality still or video images. This can be used to display a
virtual object in a physical space.

Control circuits 136, discussed further in connection with
FIG. 3, provide various electronics that support the other
components of HMD device. Inside, or mounted to temple
102, are ear phones 130 and inertial sensors 132 (e.g., an
example of the orientation sensor 27 of FIG. 1). In one
embodiment, the inertial sensors 132 include a three axis
magnetometer 132A, three axis gyroscope 132B and three
axis accelerometer 132C (see FIG. 3). The inertial sensors
are for sensing position, orientation, sudden accelerations of
HMD device. For example, the inertial sensors can be one or
more sensors which are used to determine an orientation and
location of the HMD worn on the user’s head.

The microdisplay projects an image through lens 122.
Light guide optical element 112 transmits light from the
microdisplay to the eye 140 of the user while allowing light
from in front of the HMD device to be transmitted through
light guide optical element to eye 140, as depicted by arrow
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142, allowing the user to have an actual direct view of the
space in front of HMD device, in addition to receiving an
augmented reality image from the microdisplay. Thus, the
walls of light guide optical element are see-through. Light
guide optical element includes a first reflecting surface 124
(e.g., a mirror or other surface). Light from the microdisplay
passes through lens 122 and is incident on reflecting surface
124, which reflects the incident light such that light is
trapped inside a planar, substrate comprising light guide
optical element by internal reflection. After several reflec-
tions off the surfaces of the substrate, the trapped light waves
reach an array of selectively reflecting surfaces, including
example surface 126.

Reflecting surfaces 126 couple the incident light waves
out of the substrate into the eye 140 of the user. Different
light rays will travel and bounce off the inside of the
substrate at different angles as they hit the various reflecting
surface 126 at different angles. Therefore, different light rays
will be reflected out of the substrate by different ones of the
reflecting surfaces. The selection of which light rays will be
reflected out of the substrate by which surface 126 is
engineered by selecting an appropriate angle of the surfaces
126. In one embodiment, each eye will have its own light
guide optical element. When the HMD device has two light
guide optical elements, each eye can have its own micro-
display that can display the same image in both eyes or
different images in the two eyes. In another embodiment,
there can be one light guide optical element which reflects
light into both eyes.

FIG. 3 is a block diagram depicting the various compo-
nents of HMD device 150 of FIG. 2. The HMD device
components include many sensors that track various condi-
tions. In an example implementation, the HMD device can
receive instructions about an augmented reality image from
the processing unit 105 and provide the sensor information
back to the processing unit, depicted in FIG. 4. Optionally,
the processing unit also receives sensory information from a
server or a hub computing device. Based on that informa-
tion, and/or other criterion, the processing unit can deter-
mine where and when to provide an augmented reality
image to the user and send instructions accordingly to the
HMD device.

Note that some of the components (e.g., eye tracking
camera 134B, microdisplay 120, opacity filter 114, eye
tracking illumination 134 A and earphones 130) are shown in
shadow to indicate that there are two of each of those
devices, one for the left side and one for the right side of
HMD device. Similarly, the depth sensor 313 can include an
infrared emitter 115 and an infrared sensor/detector 117, for
instance. In another approach, two or more cameras with a
known spacing between them are used as a depth camera to
obtain depth data for objects in a room, indicating the
distance from the cameras/HMD device to the object.
Optionally, one visible light camera 113 is used. The eye
tracking camera 134B and the eye tracking illumination
134 A are part of an eye tracking component 134.

Images from the forward-facing cameras can be used to
identify people, hand gestures and other objects in a field of
view of the user. For example, it can be determined when the
user makes a hand gesture such as pointing at an object. The
real-world object can be identified and associated with a data
stream, or used as the location to display a previously-
associated data stream.

A control circuit 300 communicates with the power
management circuit 302. Control circuit 300 includes pro-
cessor 310, memory controller 312 in communication with
memory 344 (e.g., DRAM), camera interface 316, camera
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buffer 318, display driver 320, display formatter 322, timing
generator 326, display out interface 328, and display in
interface 330. A GPS circuit 317 can be used to identify the
location of the HMD device.

In one embodiment, all of components of control circuit
300 are in communication with each other via dedicated
lines or one or more buses. In another embodiment, each of
the components of control circuit 300 communicates with
processor 310. A camera interface/buffer 316 provides an
interface to, and stores images from, the visible light camera.
A depth sensor interface/buffer 318 provides an interface to,
and stores images from, the depth sensor.

Display driver 320 drives the microdisplay. Display for-
matter 322 provides information, about the augmented real-
ity image being displayed on the microdisplay, to opacity
control circuit 324, which controls opacity filter 114. Timing
generator 326 is used to provide timing data for the system.
Display out interface 328 is a buffer for providing images
from forward-facing cameras 113 to the processing unit 105.
Display in interface 330 is a buffer for receiving images such
as an augmented reality image to be displayed on the
microdisplay.

Display out interface 328 and display in interface 330
communicate with band interface 332 which is an interface
to processing unit, when the processing unit is attached to
the frame of the HMD device by a wire, or communicates by
a wireless link, and is worn on the wrist of the user on a wrist
band. This approach reduces the weight of the frame-carried
components of the HMD device. In other approaches, as
mentioned, the processing unit can be carried by the frame
and a band interface is not used.

Power management circuit 302 includes voltage regulator
334, eye tracking illumination driver 337, audio DAC and
amplifier 338, microphone preamplifier audio ADC 340 and
clock generator 345. Voltage regulator 334 receives power
from processing unit via band interface 332 and provides
that power to the other components of HMD device. Eye
tracking illumination driver provides the infrared (IR) light
source for eye tracking illumination 134A, as described
above. Audio DAC and amplifier 338 receives the audio
information from earphones 130. Microphone preamplifier
and audio ADC 340 provides an interface for microphone
110. Power management unit 302 also provides power and
receives data back from three-axis magnetometer 132A,
three-axis gyroscope 132B and three axis accelerometer
132C, as part of an orientation sensor.

FIG. 4 is a block diagram describing the various compo-
nents of the processing unit 105 of FIG. 2. Control circuit
404 communicates with power management circuit 406.
Control circuit 404 includes a central processing unit (CPU)
420, graphics processing unit (GPU) 422, cache 424, RAM
426, memory control 428 in communication with memory
430 (e.g., DRAM), flash memory controller 432 in commu-
nication with flash memory 434 (or other type of non-
volatile storage), display out buffer 436 in communication
with HMD device via band interface 402 and band interface
332 (when used), display in buffer 438 in communication
with HMD device via band interface 402 and band interface
332 (when used), microphone interface 440 in communica-
tion with an external microphone connector 442 for con-
necting to a microphone, Peripheral Component Intercon-
nect (PCI) express interface 444 for connecting to a wireless
communication component 446, and USB port(s) 448.

In one embodiment, wireless communication component
446 can include a Wi-Fi® enabled communication device,
BLUETOOTH® communication device, or infrared com-
munication device. The wireless communication component
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446 is a wireless communication interface which, in one
implementation, receives data in synchronism with the con-
tent displayed by the HMD device. Further, augmented
reality images may be displayed in response to the received
data. In one approach, such data is received from a server,
a hub computing system, a local Wi-Fi® network or WLAN,
a cell phone network, a local storage device or other source.

The USB port can be used to dock the processing unit to
hub computing system 50 to load data or software onto
processing unit, as well as charge processing unit. In one
embodiment, CPU 420 and GPU 422 are the main work-
horses for determining where, when and how to insert
augmented reality images into the view of the user.

Power management circuit 406 includes clock generator
460, analog to digital converter 462, battery charger 464,
voltage regulator 466 and HMD power source 476. Analog
to digital converter 462 is connected to a charging jack 470
for receiving an AC supply and creating a DC supply for the
system. Voltage regulator 466 communicates with battery
468 for supplying power to the system. Battery charger 464
is used to charge battery 468 (via voltage regulator 466)
upon receiving power from charging jack 470. HMD power
source 476 provides power to the HMD device.

The calculations that determine where, how and when to
insert an augmented reality image can be performed by the
HMD device and/or by a computing device which commu-
nicates with the HMD device.

In one example embodiment, the HMD device will create
a model of the environment that the user is in and track
various objects in that environment, based on the field of
view of the HMD device. The model and the tracking
information are provided to processing unit. Sensor infor-
mation obtained by HMD device is transmitted to processing
unit. Processing unit refines the field of view of the user and
provide instructions to HMD device on how, where and
when to insert augmented reality images.

FIG. 5 is a block diagram of one embodiment of the hub
computing system 50 of FIG. 1. In this embodiment, the
computing system is a multimedia console 500 such as a
gaming console. The multimedia console has a CPU 501,
and a memory controller 502 that facilitates processor access
to various types of memory, including a flash Read Only
Memory (ROM) 503, a Random Access Memory (RAM)
506, a hard disk drive 508, and portable media drive 505. In
one implementation, CPU includes a level 1 cache 510 and
a level 2 cache 512, to temporarily store data and hence
reduce the number of memory access cycles made to the
hard drive 508, thereby improving processing speed and
throughput.

CPU, memory controller, and various memory devices are
interconnected via one or more buses (not shown).

In one implementation, CPU, memory controller, ROM,
and RAM are integrated onto a common module 514. In this
implementation, ROM is configured as a flash ROM that is
connected to memory controller via a PCI bus and a ROM
bus (neither of which are shown). RAM is configured as
multiple Double Data Rate Synchronous Dynamic RAM
(DDR SDRAM) modules that are independently controlled
by memory controller via separate buses (not shown). Hard
disk drive and portable media drive are shown connected to
the memory controller via the PCI bus and an AT Attachment
(ATA) bus 516.

A GPU 520 and a video encoder 522 form a video
processing pipeline for high speed and high resolution
graphics processing.

An audio processing unit 524 and an audio codec (coder/
decoder) 526 form a corresponding audio processing pipe-
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line for multi-channel audio processing of various digital
audio formats. Audio data are carried between audio pro-
cessing unit and the audio codec via a communication link
(not shown). The video and audio processing pipelines
output data to an A/V (audio/video) port 528 for transmis-
sion to a television or other display. In the illustrated
implementation, video and audio processing components
520-528 are mounted on the module.

The module 514 includes a USB host controller 531 and
a network interface 532. USB host controller is shown in
communication with CPU and memory controller via a bus
(e.g., PCI bus) and serves as host for peripheral controllers
504(1)-504(4). Network interface provides access to a net-
work (e.g., Internet, home network, etc.) and may be any of
a wide variety of various wired or wireless interface com-
ponents.

In the implementation depicted, the console includes a
controller support subassembly 540 for supporting the four
peripheral controllers. The controller support subassembly
includes any hardware and software components needed to
support wired and wireless operation with an external con-
trol device, such as for example, a media and game con-
troller. A front panel /O subassembly 542 supports the
multiple functionalities of power button 512, the eject button
541, as well as any LEDs (light emitting diodes) or other
indicators exposed on the outer surface of console. Subas-
semblies and are in communication with module via one or
more cable assemblies 544. In other implementations, the
console can include additional controller subassemblies. An
optical I/O interface 535 sends and receives signals that can
be communicated to module 514. The interface may be
responsive to a remote control 590.

Memory units (MUs) 540(1) and 540(2) are connectable
to MU ports “A” 530(1) and “B” 530(2) respectively.
Additional MUs (e.g., MUs 540(3)-540(6)) are illustrated as
being connectable to the peripheral controllers 504(1) and
504(3), i.e., two MUSs for each controller. Controllers 504(2)
and 504(4) can also be configured to receive MUs (not
shown). Each MU offers additional storage on which games,
game parameters, and other data may be stored. In some
implementations, the other data can include any of a digital
game component, an executable gaming application, an
instruction set for expanding a gaming application, and a
media file. When inserted into the console or a controller,
MU can be accessed by memory controller. A system power
supply module 550 provides power to the components of the
console. A fan 552 cools the circuitry within the console. A
microcontroller unit 554 is also provided.

An application 560 comprising machine instructions is
stored on hard disk drive. When the console is powered on,
various portions of application are loaded into the RAM,
and/or the caches, for execution on the CPU, wherein
application is one such example. Various applications can be
stored on hard disk drive for execution on CPU.

The console may be operated as a standalone system by
simply connecting the system to a monitor, a television, a
video projector, or other display device. In this standalone
mode, the console enables one or more players to play
games, or enjoy digital media, e.g., by watching movies, or
listening to music. However, with the integration of broad-
band connectivity made available through network interface,
the console may further be operated as a participant in a
larger network gaming community.

FIG. 6A depicts a process for reconstructing surfaces in a
physical space using a pose graph. Step 600 indicates that a
rig moves in different poses in a physical space. Step 601
involves obtaining images of the physical space from a
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visible light camera on the rig. Step 602 involves obtaining
orientation readings from an orientation sensor on the rig.
Step 603 involves processing the images and orientation
readings to provide and update a pose graph. Step 604
obtaining orientation depth maps of volumes of the physical
space from a depth sensor on the rig. Step 605 involves
anchoring the volumes to nodes in the pose graph. Step 606
involves reconstructing surfaces in the physical space based
on a state of the pose graph. Note that the some of the steps
can be performed concurrently or in different orders. Gen-
erally, the obtaining of the images and the updating of the
pose graph can occur separately from the obtaining of the
depth maps and the reconstructing of the surfaces. Similarly,
the obtaining of the depth maps can occur separately from
the obtaining of the images and the updating of the pose
graph. As the rig continues to move, additional images and
depth maps may be captured and processed. Further details
regarding the process are provided below.

FIG. 6B depicts further details of step 603 of FIG. 6A.
Step 603 involved processing images and orientation read-
ings to provide and update a pose graph. Step 610 involves
inputting an orientation reading and an image of a pose of
the rig, and determining image features. Generally, an image
can be processed to represent it in a compact way, to reduce
data storage requirements and to facilitate feature-based
image matching. An image can include features such as
colors, patterns, shapes, lines and so forth, and common
features in two images can be identified. One way to
represent images is to use a feature detector and descriptor.
Popular descriptors include the Scale Invariant Feature
Transform (SIFT) and Speeded Up Robust Features (SURF).
These are known to be robust to scale, rotation and illumi-
nation changes.

For instance, in the SIFT technique, keypoints of objects
in a physical space are first extracted from a set of reference
images and stored in a database. An object is recognized in
a new image by individually comparing each feature from
the new image to this database and finding candidate match-
ing features based on Euclidean distance of their feature
vectors. From the full set of matches, subsets of keypoints
that agree on the object and its location, scale, and orienta-
tion in the new image are identified to filter out good
matches. The determination of consistent clusters is per-
formed rapidly by using an efficient hash table implemen-
tation of the generalized Hough transform. Each cluster of
three or more features that agree on an object and its pose is
then subject to further detailed model verification and,
subsequently, outliers are discarded. Finally, the probability
that a particular set of features indicates the presence of an
object is computed, given the accuracy of fit and number of
probable false matches. Object matches that pass all these
tests can be identified as correct with high confidence. See,
e.g., U.S. Pat. No. 6,711,293, “Method and apparatus for
identifying scale invariant features in an image and use of
same for locating an object in an image,” David Lowe,
issued Mar. 23, 2004 and incorporated herein by reference.

Decision step 611 determines whether the pose is new. In
one approach, if the pose is not sufficiently different than a
previous pose or another pose, it may not be considered to
be new, in which case the flow returns to step 610. For
example, the pose may be new if the orientation is signifi-
cantly different than in other nodes. Or, the pose may be new
if features of the image are significantly different than in
other nodes or if a specified amount of time has passed since
last new pose. In one approach, the camera provides a
sequence of video images and selected images are suitable
for use in defining a node.
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If the pose is new, step 612 adds a new node to the pose
graph. Step 613 determines a coordinate system associated
with the orientation of the pose. Or, the coordinate system
may already have been determined. Step 614 associates the
image taken with the pose (e.g., the image captured by the
camera on the rig when the rig/camera has assumed the
pose) and the coordinate system with the new node. For
example, this can involve storing the information in a
database, as discussed further below. An image can be
represented and stored in any form, including pixel data
and/or extracted feature data. Step 615 determines a corre-
spondence between the image associated with the new node
and images of one or more other nodes in the pose graph. For
instance, this can involve comparing the features of the
image of the new node to features of images of one or more
other nodes which are close to the new node in the pose
graph. The correspondence between two images is relatively
high when the features in the two images are relatively
similar. For example, the degree of correspondence can be
determined using the SIFT technique.

Step 616 determines a transform between the coordinate
system of the new node and the coordinate systems of the
one or more other nodes. Step 617 associates the transform
and the correspondence with one or more links between the
new node and the one or more other nodes. Step 618 updates
the other nodes and links in the pose graph if appropriate.
For example, updating of the state of the pose graph can
involve performing a bundle adjustment in which the coor-
dinate systems and the transforms are adjusted, or updating
one or more of the correspondences, or performing a relo-
calization in which there is a change in topology in the pose
graph. For instance, the relocalization can comprise a loop
closure, in which a closed loop of the nodes is formed in the
pose graph.

FIG. 6C depicts further details of step 604 of FIG. 6A.
Step 604 involved obtaining depth maps of volumes of the
physical space from the depth sensor on the rig. Step 620
involves deciding to acquire a depth map. For example, this
can occur when the rig is aimed at an area of a physical space
for which depth data has not been obtained. Step 621
involves partitioning the physical space into one or more
volumes, and creating a new volume if appropriate. A
volume can be a uniformly shaped space such as a cube in
the physical space. In one approach, the volume is divided
into sub-volumes referred to as blocks, where there are
NxNxN blocks per volume, and N is an integer of one or
more. Further, each block can be divided into 8x8x8 voxels.
Step 622 involves positioning the volumes to overlap one
another. For example, the amount of overlap can be set to
exceed a minimum threshold but to not exceed a maximum
threshold when a volume is initially positioned. See FIGS.
10A and 10B for further details. The position of a volume
can be adjusted after the volume is initially positioned, so
that the amount of overlap can change. However, the initial
use of overlap tends to avoid gaps from forming when the
position of a volume is adjusted. Step 623 involves clipping
a volume having an excessive amount of overlap, e.g., more
than a maximum threshold. See FIGS. 11A and 11B.

FIG. 6D depicts further details of step 605 of FIG. 6A.
Step 605 involved anchoring the volumes to nodes in the
pose graph. Step 630 involves identifying a node in the pose
graph having a pose similar to a pose associated with the
depth map. That is, the pose of the rig which was used to
create a node in the pose graph is similar to, or the same as,
the pose of the rig when the depth map was captured. In one
approach, the poses are the same and occur at the same time.
In another approach, the poses are the same or similar and
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occur at different times. Step 631 involves anchoring the
volume to the identified node, e.g., in a database as discussed
further below. Thus, a volume is associated with a node such
that the volume is positioned in the physical space based on
the coordinate system of the node. When the coordinate
system of the node is adjusted, the position of the volume in
the physical space is also adjusted. Typically, a volume
continues to be anchored to one node, but it is possible for
a volume to be re-anchored to a different node, such as if the
pose of the different nodes becomes closer to the pose used
to obtain the volume, due to updating of the pose graph.
Also, the volumes can be anchored to the nodes on a
one-to-one or many-to-one basis.

FIG. 6E depicts further details of step 606 of FIG. 6A.
Step 606 involved reconstructing surfaces in the physical
space based on a state of the pose graph. Step 640 involves
identifying one or more volumes and associated depth maps
for surface reconstruction. For example, these volumes may
correspond to a portion of a physical space in the user’s field
of view. As the user turns his head and looks at different
portions of the physical space, the volumes involved in
surface reconstruction can change accordingly. Step 641
involves determining one or more nodes to which the one or
more volumes are anchored. This can be done by looking up
a node which is cross referenced to a volume in a database.
Step 642 involves determining the coordinate systems of the
one or more nodes. This can be done by looking up a
coordinate system which is cross referenced to a node in a
database. Step 643 involves projecting the one or more
volumes into the one or more depth maps based on the one
or more coordinate systems. Essentially, the depth map is
defined with respect to a coordinate system such that the
depth values of the depth map are associated with portions
of a volume based on the coordinate system.

FIG. 7 depicts a surface reconstruction pipeline for car-
rying out the process of FIG. 6A. In this example imple-
mentation, the SR pipeline runs across both an Application-
Specific Integrated Circuit (ASIC) 700 and a System-on-a-
Chip (SoC) 740. The ASIC and SoC each host multiple
devices and subsystems. Arrows indicate a data flow direc-
tion. Sensors 710 connect to the ASIC. The sensor are
carried on a rig such as an HMD device or a robot. These
sensors include an orientation sensor 711 such as an inertial
measurement unit (IMU) which senses rotation and linear
acceleration. A visible light camera 712 obtains visible light
images of a physical space and a depth sensor 713 obtains
a depth map of a physical space. An example implementa-
tion uses a time of flight camera as the depth sensor. This
sensor measures the round-trip time of light flashed from the
camera, bounced off surfaces in the physical space, and
returned to the sensor. The total round-trip time takes tens of
nanoseconds. Another implementation of the depth sensor is
a stereo pair of visible light cameras, but this approach may
result in a lower quality depth map.

A tracking subsystem 720 converts sensor data into poses
and a map of interconnected coordinate frames. For
example, this can be a head tracking subsystem in the
example case of an HMD device. The tracking subsystem
720 is responsive to a map service subsystem 741, and
includes a tracking and mapping process 721. The tracking
subsystem 720 and the map service subsystem 741 together
form a tracking and mapping subsystem 742.

An SR Fusion and Extraction Kernel (SRFEK) converts
depth maps and poses into surface data. The SRFEK runs on
the ASIC, and communicates with other processes in both
the ASIC and the SoC. The SRFEK takes in two pieces of
input data: depth maps and poses. A raw to depth subsystem
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731 captures raw infrared images from the depth sensor and
converts them into depth values in depth maps. The depth
values indicates a distance of one or more surfaces in the
physical space from the depth sensor. These depth maps
have lens distortion. To address this, an undistortion sub-
system 732 removes the effects of distortion from the lens of
the camera from the depth images, to provide an undistorted
depth map. This can involve applying a model of lens
distortion, whose parameters are measured through calibra-
tion, to yield a flat undistorted image. At runtime, this can
involve creating an undistortion map (a lookup table) and
applying it to each depth map pixel.

A 3D fusion subsystem 734 combines the undistorted
depth map with a pose to fuse it into a 3D volume. Fusion
involves projecting depth maps (which are 2D images) into
a volume (which is 3D). For example, a signed distance
function (SDF) can be used which represents a distance from
the depth sensor to the surface of an object. See FIGS. 8A
and 8B for further details.

An extraction algorithm 733 creates a polygon mesh from
that volumetric data. Not all applications require a polygon
mesh, but they are often useful in applications such as game
engines which use meshes for rendering and collision. One
way to extract a mesh after populating the SDF volume uses
an algorithm called Marching Cubes. The idea behind
Marching Cubes involves turning each box of volumetric
data into a set of polygons, where the vertices of those
polygons lie on edges of the boxes. For further details, see
U.S. Pat. No. 4,710,876, “System and method for the display
of surface structures contained within the interior region of
a solid body,” incorporated herein by reference.

Outputs of the 3D fusion subsystem 734 and the extrac-
tion algorithm 733 can be stored in a SRFEK cache 735.
This output includes the reconstructed surfaces which rep-
resent the geometry of the physical space.

A SR service 750 is a higher level process which controls
SRFEK, giving it chunks of data and commands to process
that data. The SR service also feeds surface data which is
obtained from surface reconstruction to applications. The
service includes a depth map acquisition subsystem 751
which decides when to trigger the acquisition of depth maps,
based on where and when they are needed. A volume
placement subsystem 752 decides how to partition the
physical space into volumes, e.g., how many volumes to
create and where to place them. Deciding where to place
volumes is the initial problem. We can start with a set of
previously-defined SR volumes. See FIGS. 9A and 9B for
further details.

SR data can occupy a lot of memory, so the service
decides which data to keep in memory, e.g., an SR service
cache 754, and which to store for later use, e.g., in a backing
store 755, using a cache eviction and replenishment subsys-
tem 753. The SR service decides what SR data to evict and
replenish, when to evict and replenish the data, and supplies
applications with SR data. The SR service is useful in
managing scale, both in terms of the size of the physical
space and the quantity of data which is generated. The
system should work on physical scales that extend beyond
the immediate vicinity of the user, e.g., in physical spaces of
several meters such as in an office building. Brute-force
solutions will not work because even modestly-sized regions
uses hundreds or thousands of SR volumes and each SR
volume can use a few megabytes. The SR system can scale
by partitioning a space into volumes and paging (e.g.,
transferring) those volumes between memory and disk.

The SR Service can accomplish both persistence and data
scalability with the cache eviction and replenishment sub-
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system. For example, this subsystem can establish a maxi-
mum number of volumes. This provides a cap on the amount
of SoC main memory the SR service consumes. When that
cap would be exceeded by adding more data, or more SR
volumes, we can evict some other volumes. This is analo-
gous to a least-recently-used (LRU) eviction policy, except
the SR Service can evict the farthest volumes, e.g., farthest
from the rig. Moreover, when the rig re-enters a region for
which it previously captured SR data, the cache can be
replenished with that data. Thus, we can intermittently
replenish the cache from the backing store by loading the
closest volumes to the rig. Note that new volumes can still
be added so they also contribute to the cache population.

Many applications can consume SR data in similar ways.
An SR extensions and utilities subsystem 760 provides
common functionality for application developers. Exten-
sions and utilities can include occlusion rendering 761 for
occluding holograms with real-world geometry, mesh post-
processing 762 to add useful auxiliary information, collision
detection 763 between real and virtual objects, play space
definition 764 and negative space allocation 765 to help with
hologram placement. Examples of SR mesh post-processing
routines include welding vertices, zippering meshes, com-
puting surface normals, clipping triangles from overlapping
meshes, smoothing meshes, and simplifying meshes to
reduce the number of polygons.

Regarding hologram placement, meshes can be too fine
and complicated for certain kinds of hologram placement
logic. Instead, application developers can find it easier to
deal with abstractions such as walls, ceilings and floors. One
solution is to find flat triangles, identify connected flat
regions, and then fit planes to those regions. To find con-
tiguous regions of low curvature, multiple separate meshes
are first combined into a single contiguous mesh. This is
where welding and zippering are useful.

Regarding computing surface normals, to find flat regions,
it is useful to compute surface curvature. The SR pipeline
can generate per-vertex normals, either from the SDF (using
finite differences) or from the mesh (using per-face nor-
mals).

Another example of SR mesh post-processing is applying
texture as captured from the camera.

FIG. 8A depicts an example of a signed distance function
(SDF) as discussed in connection with the 3D fusion sub-
system 734 of FIG. 7. The horizontal axis depicts a distance
from the depth sensor to an object 800 in a physical space.
The vertical axis depicts a value of the SDF. The object has
a front surface 801 and a back surface 802. A line 805
represents the SDF. Regions outside the object have a
positive distance, regions inside the object to have a negative
distance, and regions at a surface of the object have a value
of zero. In some cases, the front surface of an object but not
the back surface is detected. Fusion involves populating a
volume of voxels with SDF values inferred from projecting
voxels into depth maps. We start with an SDF volume, then
acquire a depth map and its pose relative to that volume. The
fusion algorithm injects a posed depth map as follows. For
each voxel, project it into the depth map and update the SDF
value according to the distance of the voxel relative to the
distance from the surface. Surfaces lie on the boundary
between negative and positive SDF values, where the func-
tion is zero—the so-called zero level set. This procedure is
repeated for each depth map.

FIG. 8B depicts an example of a depth map projected into
voxels. Each square represents a voxel. The voxels shown
can be part of one or more blocks. A solid line 810 represents
a surface of an object. A dashed line 811 represents a surface
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which is not detected but is assumed to be far from the
sensor, past the maximum depth which can be sensed. Depth
values for this surface can be set at a default depth. Voxels
traversed by these lines have SDF=0 and are represented by
a diagonal lined pattern, such as with voxel 813. Voxels
which are considered to be within the object have SDF<0 are
represented by a dotted pattern, such as with voxel 812.
Voxels which are considered to be outside the object have
SDF>0 and are represented by unpatterned boxes, such as
with voxel 814. A line 815 represents a boundary of a view
frustum of the depth sensor. The view shown can be an
overhead view of a room, where the line 810 represents a
wall and a frame on the wall.

FIG. 9A depicts a set of volumes 900-904 and a frustum
920 of a depth sensor. Note that some overlap between the
volumes is shown. Some of the volumes are shown with
dashed line patterns to clearly distinguish the volumes from
one another. When the SR service decides to acquire a depth
map, the depth sensor is activated. The frustum represents
the field of view of the depth sensor, e.g., a portion of the
physical space in which depth readings can be obtained. The
SR service then compares the depth map frustum with the set
of SR volumes. If any portion of the depth map frustum is
not covered by any SR volume, the service can create a new
volume. However, the placement of the new volume, includ-
ing its orientation relative to the other volumes, is an issue.
The new volume can be initially placed somewhere where
the frustum lacks coverage by any existing volume. Then,
the new volume is repositioned to align with the existing
volumes. The repositioning can involve a translation and/or
a rotation in the physical space which refines the new
volume’s position. This can include providing a desired
amount of overlap of the new volume relative to one or more
existing volumes.

FIG. 9B depicts a new volume which is added to the set
of volumes 900-904 of FIG. 9A, as represented by an
initially-placed volume 905 and a repositioned volume 906.

FIG. 10A depicts volumes which have an initial amount
of'overlap. Example volumes 1000-1008 are depicted in two
dimensions as a simplification. Each volume encompasses a
three-dimensional space. Volumes 1005 and 1008 overlap
one another in an overlap region 1009. The degree of overlap
can be represented as a fraction (e.g., percentage) of the
width of a volume. Moreover, a minimum overlap threshold
can be set as a specified fraction of the width of a volume.
The width is the relevant dimension of a volume in the
direction of overlap. In this case, the overlap exceeds the
minimum threshold. This could occur when a new volume
(e.g., volume 1005) is placed relative to a neighboring
volume (e.g., volume 1008).

FIG. 10B depicts the volumes of FIG. 10A after their
positions are adjusted based on an adjustment of a pose
graph, resulting in a reduced amount of overlap. In this case,
the overlap area 1010 is less than the overlap region 1009 in
FIG. 10A due to an adjustment of the positions of the
volumes in the physical space. For example, the volume
1008 could move further away from the volume 1005 due to
the adjustment. Advantageously, no gap has resulted, so that
a reconstructed surface in these volumes will not have a gap.

In contrast, suppose we initially placed SR volumes to be
perfectly aligned with each other, with no gap or overlap.
Then, after pose adjustment, the SR volumes could have
gaps between them. We therefore initially place SR volumes
to have some moderate overlap. That way, when they move
due to pose adjustment, there is less of a chance they will
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have gaps between them. Gaps are generally undesirable
since they result in discontinuities in the reconstructed
surfaces.

FIG. 11A depicts an example of clipping of blocks in a
volume due to excessive overlap. A volume 1100 includes
7x7 blocks in this example. Each block is represented by a
small square. The amount of overlap with a volume 1110
exceeds the maximum overlap threshold, indicating that
clipping of blocks is desirable. A row of clipped blocks,
including an example clipped block 1111, is depicted. Each
clipped block has a cross-hatched pattern. Block 1112 is an
example block in the volume 1100 in the overlap region
1101 which is not clipped. Block 1113 is an example block
in the volume 1100 which is not in the overlap region 1101.
A clipped block is an inactive block that is ignored during
surface reconstructing to reduce processing and storage
requirements.

FIG. 11B depicts another example of clipping of blocks in
a volume due to excessive overlap. Here, a volume 1120 is
at an angle to a volume 1130, so that the overlap region 1121
is generally triangular. A clip plane is set such that there are
four clipped blocks including an example clipped block
1131. Each clipped block has a cross-hatched pattern. Block
1132 is an example block in the volume 1120 in the overlap
region 1121 which is not clipped. Block 1133 is an example
block in the volume 1120 which is not in the overlap region
1121.

Clipping of blocks in a volume can be useful as a
counterpart to providing overlap between volumes. As men-
tioned, pose adjustments cause SR volumes to move relative
to each other. To pre-emptively avoid gaps, the SR service
places volumes to have some overlap. But the overlap is at
best redundant and at worst conflicting. The SR service
deletes blocks that are entirely redundant, but this can still
leave extraneous triangles or other shaped regions in those
blocks which only partially overlap. Applications often want
to omit the overlap regions. The SR utilities therefore can
include a fast and efficient mesh clipping procedure to
eliminate overlapping triangles. The clipping routine can
provide the option to allow either a small overlap or a small
gap. Both are useful. For example, a small overlap provides
an easy and fast way to generate a mesh that appears to have
no gaps. This is useful for occlusion rendering. On the other
hand, a small gap facilitates zippering multiple separate
meshes into a single contiguous mesh, which facilitates
further mesh processing.

FIG. 12A depicts an example of a pose graph 1200 which
represents poses of a rig in a physical space. A pose graph
includes nodes connected by links. A node comprises an
image of a physical space as captured by a visible light
camera, and an associated coordinate system. A link (e.g.,
edge) between two nodes comprises a correspondence
between the images of the two nodes and a transform
between the coordinate frames of the two nodes. The pose
graph represents a path cycle of the rig. Arrow 1210 depicts
a path of the rig. Examples nodes are N1-N9. Example links
are a link L(N1,N2) which is between nodes N1 and N2 and
a link L(N1,N3) which is between nodes N1 and N3.

In particular, a pose graph of a rig can be used to optimize
the placement of volumes in a physical space for surface
reconstruction. The problem of spatial partitioning is not
specific to SR, and there are many spatial partitioning
schemes. To understand why the techniques described herein
work well for SR, first consider various aspects of how rig
tracking works. The tracking and mapping subsystem 742
(FIG. 7) of a rig tracks the rig’s trajectory through space and
time by analyzing images (e.g., pictures) which are captured
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by the camera of the rig. Imagine the rig powers on for the
first time and the camera captures images. The tracking and
mapping subsystem extracts features from the images, esti-
mates the locations of the features in the images and stores
the features. The tracking and mapping subsystem also
creates a coordinate system (e.g., a coordinate frame) it will
use to measure positions and orientations. Both the images
and the coordinate system are stored together with a node,
in a map. Then the rig moves. The tracking and mapping
subsystem takes more pictures and creates another coordi-
nate frame, that the map associates with another node. The
map service subsystem 741 recognizes that first and second
images have some common features. The mapper uses
computer vision algorithms and IMU data to estimate the
relative poses between those two nodes.

The link between nodes represents two things: correspon-
dences between images and a transform between the coor-
dinate systems of the two nodes. However, when the mapper
can obtain multiple estimates for the transform between
nodes, those transforms can be inconsistent. The tracking
and mapping system minimizes the inconsistency by adjust-
ing the coordinate transforms and feature locations. This is
called bundle adjustment. As the rig moves around, the
mapper continues to add nodes and links, and this results in
additional pose adjustments. As a result, the map of the
physical space changes over time. That is, estimates of
feature positions move and the pose graph is refined. For
example, the links in the pose graph can change distance or
orientation. SR should be robust against pose adjustments.

To understand how severe this problem can be and how
far a feature in an image can appear to move, consider loop
closure—an abrupt form of pose graph adjustment. Loop
closure is a form of relocalization. For example, imagine the
rig visits separate spaces without visiting the regions that
connect them. The mapper will have separate map compo-
nents for each space. Then, imagine the rig visits the regions
between the spaces. The tracking and mapping subsystem
will recognize that the regions are connected, and will add
links to the pose graph. Relocalization refers to any topo-
logical change to the pose graph.

One form of loop closure occurs when the rigs ends up at
apoint in space where it already visited, and the tracking and
mapping subsystem observes that fact. For example, imag-
ine a user wearing an HMD device walks into a room such
as in an art gallery and always faces the wall nearest to the
user, beginning in a starting position. The user does not look
across the room or behind the user. The user then circum-
navigates the room, looking at each wall in turn, as the
tracking and mapping subsystem creates new nodes. Just
before the user returns to the starting position, the tracking
and mapping subsystem does not yet recognize that it is at
the starting point again. But, eventually, the tracking and
mapping subsystem will recognize features captured while
the user was at the starting point and will identify corre-
spondences between images taken at the beginning and end
of this loop. It will therefore create a new link in the pose
graph, thus forming a closed loop. Just before loop closure,
the transform between the start and end of the loop entails
many hops. Just after loop closure, the transform between
the start and end of the loop entails only a single hop. Each
hop has some error, and the errors accumulate. The amount
of accumulated errors is smaller just after loop closure. So,
just before and just after loop closure, the transforms
between nodes will abruptly change. The techniques pro-
vided herein allow the SR process to benefit from adjust-
ments to the pose graph by anchoring volumes to the nodes
and their coordinate systems in a pose graph. When the pose
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graph changes, the SR volumes come along for the ride since
the volumes follow the pose graph node to which they are
anchored.

FIG. 12B depicts an example data record for an image
captured by a camera. Each image, or a set of images such
as with video, can be stored in a data record, e.g., Imagel.
An orientation reading, e.g., OR1, of the rig can be associ-
ated with the image.

FIG. 12C depicts an example data record for a depth map
captured by a depth sensor. Each depth map can be stored in
a data record, e.g., DM1. An orientation reading, e.g., OR1,
of the rig can be associated with the depth map.

FIG. 12D depicts an example data record of a pose graph.
A record for a node may include a node identifier, e.g., N1,
a camera image, e.g., Imagel and a coordinate system, e.g.,
CS1. A record for the link LL(N1,N2) may include a link
identifier, e.g., L(N1,N2), image correspondence data, e.g.,
C(N1,N2), and a transform between coordinate systems,
e.g., T(N1,N2). A record for the link [L(N1,N3) may include
a link identifier, e.g., L(N1,N3), image correspondence data,
e.g., C(N1,N3), and a transform between coordinate sys-
tems, e.g., T(N1,N3). A transform can be a matrix which
relates one coordinate system as a matrix to another coor-
dinate system as a matrix.

FIG. 13A depicts an example physical space, showing a
frustum of a depth sensor. A physical space 1300 is a room
such as in the home of a user 1301 wearing an HMD device
1302 as an example of a rig. The depth sensor on the HMD
device has a field of view which is represented by a frustum
1303 extending between a back plane 1304 and a front plane
1305 at a wall 1306 of the room. The wall includes a
doorway 1307 and a decorative painting 1308. The painting
is attached to the wall 1306 and has a noticeable depth. A
line 1309 represents a central axis of the field of view of the
depth sensor, e.g., the direction in which the depth sensor
(and the user and the HMD device) is looking A Cartesian
coordinate system 1310 with orthogonal axes of xr, yr and
7r is an example coordinate system of the HMD device (r
denotes the rig). For example, the xr axis can have the same
direction as a vector (coincident with the line 1309) which
represents the orientation of the rig. The yr axis can be
defined to extend parallel to the ground. The zr axis is then
orthogonal to the xr and yr axes. A Cartesian coordinate
system 1311 of the physical space with orthogonal axes of
X, y and 7 is also depicted. The depth sensor is at an origin
of the coordinate system.

FIG. 13B depicts a depth map 1315 consistent with FIG.
13A. The depth map includes a region 1320 for the wall
1306, a region 1321 for the painting 1308 and a region 1322
for the doorway 1307.

FIG. 13C depicts distance values of the depth map of FIG.
13B. The horizontal axis depicts a direction which is
orthogonal to the center line 1309 of the depth sensor, such
as a direction of the yr axis. The vertical axis depicts a
distance of the object from the depth sensor, such as a
distance along the xr axis. A line 1330 represents the depth.
Portions of the line which correspond to a depth of the wall
have a depth value of Dwall. A portion of the line which
corresponds to a depth of the painting has a depth value of
Dpainting. A portion of the line which corresponds to a
depth of the doorway has a depth value of Dmax, a maxi-
mum depth which can be detected by the depth sensor. In
this case, since the depth sensor looks through the doorway
to a surface which is beyond the detection range, the depth
value can be set to a maximum value. Dmin represents a
minimum depth which can be detected by the depth sensor.
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FIG. 14 A depicts the example physical space of FIG. 13A,
showing a field of view of a visible light camera. Generally,
a field of view 1340 of the camera can differ from the field
of view of the depth sensor, although they can look in the
same direction, e.g., the direction of the HMD device, and
they can be substantially overlapping. In this example, the
field of view 1340 of the camera is slightly narrower and
taller than the field of view of the depth sensor. The
coordinate system 1310 of the HMD device is the same as
in FIG. 13A as an example but this is not required. The axis
can be coincident with a center line of the camera which is
the same as the center line 1309 of the depth sensor.

FIG. 14B depicts an image obtained by the visible light
camera of FIG. 14A. The image 1400 includes a portion
1410 which represents the wall, a portion 1402 which
represents the painting, and a portion 1403 which represents
the doorway.

FIG. 14C depicts the example physical space of FIG. 13A,
showing another field of view of the visible light camera as
a pose of the HMD device is changed. In this case, the user
has moved such that the camera on the HMD device captures
a different image of the physical space. For example, the
user may have rotated his head and/or walked around in the
room. The field of view 1420 is defined relative to the
coordinate system 1430 which differs from the coordinate
system 1310 of FIG. 14A. In one approach, the xr axis is
coincident with a center line 1421 of the camera.

FIG. 14D depicts an image obtained by the visible light
camera of FIG. 14C. The image 1440 includes a portion
1441 which represents the wall 1306 and the adjacent wall
1415, and a portion 1442 which represents the painting. As
can be seen, the images 1400 and 1440 will have corre-
sponding features such as the horizontal lines 1444 of the
frame of painting, the vertical lines 1443 of the frame of the
painting, and the colors and shapes of the flower and vase in
the painting.

FIG. 15A depicts an initial placement of volumes in the
physical space of FIG. 13A. The view frustum 1303 is
depicted along with eight volumes (including example vol-
ume 1500) which are defined relative to the coordinate
system 1310 and positioned to encompass the view frustum.

FIG. 15B depicts an adjusted placement of the volumes of
FIG. 15A. In this simplified example, the volumes are
adjusted similarly. However, in practice, each volume can be
adjusted independently. Example volume 1500 is adjusted to
provide example volume 1501. Moreover, the volume 1500
is defined with respect to one (e.g., initial) coordinate system
1310 (comprising axes xr, yr and zr), and the volume 1501
is defined with respect to an updated coordinate system 1510
(comprising axes xr', yr' and zr').

FIG. 16 depicts an example application in which a virtual
object is placed in the physical space of FIG. 13A. The
virtual object 1610 is a person which is visible to the user
1301 as an augmented reality image of the HMD device
1302. A field of view 1600 is associated with the augmented
reality projection system of the HMD device. The virtual
object can be placed in an appropriate location in the
physical space 1300 since the surfaces in the room are
known. For example, the virtual object can be placed a
specified distance in front of the wall 1306 and to the side
of the doorway 1307. Moreover, real-world objects which
are behind the virtual object such as the painting 1308 can
be occluded to provide greater realism. Note that different or
common fields of view can be associated with the depth
sensor, the camera and the augmented reality projection
system. Further, while example implementations involving
an HMD device have been described, the techniques pro-
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vided herein are applicable to many other scenarios, includ-
ing those involving robots and other types of rigs.
Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.
What is claimed is:
1. A method for reconstructing a physical space, compris-
ing:
obtaining a plurality of images of the physical space using
a camera carried by a rig while the rig moves in the
physical space through a plurality of poses;
determining an orientation and a coordinate system of
each pose;
partitioning the physical space into a plurality of volumes;
for each volume of the plurality of volumes, obtaining a
depth map of the physical space using a depth sensor
carried by the rig;
providing a pose graph comprising a plurality of nodes
and links between the nodes, each node being associ-
ated with one of the poses, one of the images associated
with the one of the poses and one of the coordinate
systems associated with the one of the poses, and the
links defining correspondences between the images and
transforms between the coordinate systems;
for each volume, anchoring the volume to one of the
nodes;
updating a state of the pose graph as the plurality of
images are obtained, the updating comprising updating
one or more of the nodes and one or more of the links;
and
reconstructing a surface in one or more of the volumes
according to the state of the pose graph.
2. The method of claim 1, further comprising:
based on the updating of the state of the pose graph,
re-anchoring one of the volumes to another of the
nodes.
3. The method of claim 1, wherein:
the updating of the state of the pose graph comprises
updating one or more of the coordinate systems to
provide one or more updated coordinate systems; and
the reconstructing comprises projecting the one or more
of the volumes into one or more of the depth maps
using the one or more updated coordinate systems.
4. The method of claim 1, further comprising:
dividing each of the one or more of the volumes into a
plurality of blocks; and
determining which of the blocks are in a view frustum of
the depth sensor and which of the blocks are not in the
view frustum of the depth sensor, the reconstructing
comprises projecting the blocks which are in the view
frustum but not the blocks which are not in the view
frustum, into one or more of the depth maps.
5. The method of claim 1, wherein:
the updating the state of the pose graph comprises per-
forming a bundle adjustment in which the coordinate
systems and the transforms are adjusted.
6. The method of claim 1, wherein:
the updating of the state of the pose graph comprises
updating one or more of the correspondences.
7. The method of claim 1, wherein:
the updating of the state of the pose graph comprises
performing a relocalization in which there is a change
in topology in the pose graph.
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8. The method of claim 7, wherein:
the relocalization comprises a loop closure, in which a
closed loop of the nodes is formed in the pose graph.
9. The method of claim 1, wherein:
the volumes are defined to provide an amount of overlap
at or above a minimum threshold among neighboring
volumes of the plurality of volumes.
10. The method of claim 9, further comprising:
determining that the updating the state of the pose graph
has increased the amount of overlap above a maximum
threshold, for at least one of the volumes; and
reducing the amount of overlap by clipping the at least
one of the volumes.
11. The method of claim 1, wherein:
the surface is used in at least one of placing a virtual
object, defining a play space, path-finding, collision
detection or occlusion of virtual objects, in the physical
space.
12. An apparatus for reconstructing a physical space,
comprising:
an orientation sensor;
a depth sensor;
a camera; and
a processor in communication with the orientation sensor,
the depth sensor and the camera, the processor:
obtains a plurality of images of the physical space from
the camera,
associates a pose and a coordinate system with each
image based on the orientation sensor,
partitions the physical space into a plurality of vol-
umes;
for each volume of the plurality of volumes, obtains a
depth map of the physical space from the depth
Sensor,
provides a pose graph comprising a plurality of nodes
and links between the nodes, each node being asso-
ciated with one of the poses, one of the images
associated with the one of the poses and one of the
coordinate systems associated with the one of the
poses, and the links define correspondences between
the images and transforms between the coordinate
systems;
for each volume, anchor the volume to one of the
nodes;

update a state of the pose graph as the plurality of

images are obtained; and
reconstructs a surface in one or more of the volumes
according to the state of the pose graph.
13. The apparatus of claim 12, wherein:
the orientation sensor, the depth sensor, the camera and
the processor are carried on a head mounted device or
a mobile robot.
14. The apparatus of claim 12, wherein, the processor:
to update the state of the pose graph, updates one or more
of the coordinate systems to provide one or more
updated coordinate systems; and
to reconstruct the surface, projects the one or more of the
volumes into one or more of the depth maps using the
one or more updated coordinate systems.
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15. The apparatus of claim 12, wherein:

the volumes are defined to provide an amount of overlap
at or above a minimum threshold among neighboring
volumes of the plurality of volumes; and

the update to the state of the pose graph reduces the
amount of overlap, for at least one of the volumes.

16. A processor-readable storage device having processor-

readable software embodied thereon for programming a
processor to perform a method for reconstructing a physical

10 space, the method comprising:
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obtaining a plurality of images of the physical space using
a camera carried by a rig while the rig moves in the
physical space;

determining poses of the rig, each pose being associated
with an orientation and a coordinate system;

providing a pose graph based on the poses and the images,
the pose graph comprising a plurality of nodes and
links between the nodes;

obtaining a depth map of a volume in the physical space
using a depth sensor carried by the rig;

anchoring the volume to one of the nodes;

updating a state of the pose graph as the plurality of
images are obtained, the updating comprises updating
one of the coordinate systems which is associated with
the one of the nodes; and

reconstructing a surface in the volume according to the
state of the pose graph.

17. The processor-readable storage device of claim 16,

wherein:

in the pose graph, each node is associated with one of the
poses, one of the images associated with the one of the
poses and one of the coordinate systems associated
with the one of the poses, and the links define corre-
spondences between the images and transforms
between the coordinate systems; and

the updating comprising updating one or more of the
nodes and one or more of the links.

18. The processor-readable storage device of claim 16,

wherein:

the reconstructing is based on a position of the volume in
the physical space;

the position of the volume in the physical space is defined
with respect to the one of the coordinate systems; and

the position of the volume in the physical space changes
when the one of the coordinate systems is updated.

19. The processor-readable storage device of claim 18,

wherein:

the position of the volume in the physical space is based
on a view frustum of the camera in the one of the
coordinate systems.

20. The processor-readable storage device of claim 16,

wherein:

the reconstructing comprises projecting the volume into
the depth map using the one of the coordinate systems
before the one of the coordinate systems is updated
followed by projecting the volume into the depth map
using the one of the coordinate systems after the one of
the coordinate systems is updated.
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